Skip to main content

What Owl Monkeys (Aotus spp.) Tell Us About the Dynamics Between Thermo-Energetics and Organismal Biology

  • Chapter
  • First Online:
Owl Monkeys

Abstract

Owl monkeys are found in a variety of ecosystems ranging from the highlands of Panama and Colombia, to the Amazon, and to the South American Chaco. As such, the only extant nocturnal primate in the Neotropics experiences contrasting thermal challenges throughout its distribution, investing metabolic energy in thermoregulation appropriately. Thermoregulation is metabolically costly and limits the amount of energy individuals have to search for food, shelter, and mates, directly affecting their survival and reproduction. As a result, these ~1 kg monkeys seem to have developed strategies to balance their high investment in thermoregulation. We present a summary and synthesis of research on the thermo-energetics of captive and wild owl monkeys and describe the morphological, physiological, and behavioral adaptations they have evolved across their wide geographic distribution. We conclude by proposing a unifying model for the role ambient temperature has in the evolution of these pair-living, sexually monogamous primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolph EF (1947) Tolerance to heat and dehydration in several species of mammals. Am J Phys 151(2):564–575

    CAS  Google Scholar 

  • Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27(4):249–268

    Article  Google Scholar 

  • Angilletta MJ, Cooper BS, Schuler MS, Boyles JG (2010) The evolution of thermal physiology in endotherms. Front Biosci E2:861–881

    Article  Google Scholar 

  • Aquino R, Encarnación F (1986) Characteristics and use of sleeping sites in Aotus (Cebidae: Primates) in the Amazon lowlands of Peru. Am J Primatol 11(4):319–331

    Article  PubMed  Google Scholar 

  • Ashton KG, Tracy MC, De Queiroz A (2000) Is Bergmann’s rule valid for mammals? Am Nat 156(4):390–415

    Article  PubMed  Google Scholar 

  • Bergmann KGLC (1847) Über die Verhältnisse der wärmeokönomie der Thiere zu ihre Grösse. Göttinger Studien 3:595–708

    Google Scholar 

  • Blanco MB, Dausmann KH, Ranaivoarisoa JF, Yoder AD (2013) Underground hibernation in a primate. Sci Rep 3(1):1–4

    Article  Google Scholar 

  • Blix AS (2016) Adaptations to polar life in mammals and birds. J Exp Biol 219(8):1093–1105

    Article  PubMed  Google Scholar 

  • Boyles JG, Bakken GS (2007) Seasonal changes and wind dependence of thermal conductance in dorsal fur from two small mammal species (Peromyscus leucopus and Microtus pennsylvanicus). J Therm Biol 32(7–8):383–387

    Article  Google Scholar 

  • Briscoe NJ, Handasyde KA, Griffiths SR, Porter WP, Krockenberger A, Kearney MR (2014) Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biol Lett 10(6):20140235

    Article  PubMed  PubMed Central  Google Scholar 

  • Bronson FH (2009) Climate change and seasonal reproduction in mammals. Philos Trans R Soc Lond B Biol Sci 364(1534):3331–3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cain JW III, Krausman PR, Rosenstock SR, Turner JC (2013) Mechanisms of thermoregulation and water balance in desert ungulates. Wildl Soc Bull 34(3):570–581

    Article  Google Scholar 

  • Campbell LAD, Tkaczynski PJ, Lehmann J, Mouna M, Majolo B (2018) Social thermoregulation as a potential mechanism linking sociality and fitness: barbary macaques with more social partners form larger huddles. Sci Rep 8(1):1–8

    Article  Google Scholar 

  • Cantoni D, Brown RE (1997) Paternal investment and reproductive success in the California mouse, Peromyscus californicus. Anim Behav 54(2):377–386

    Article  CAS  PubMed  Google Scholar 

  • Charkoudian N, Stachenfeld NS (2014) Reproductive hormone influences on thermoregulation in women. Compr Physiol 4(2):793–804

    Article  PubMed  Google Scholar 

  • Clarke A, Pörtner HO (2010) Temperature, metabolic power and the evolution of endothermy. Biol Rev 85(4):703–727

    PubMed  Google Scholar 

  • Craig Heller H, Colliver GW, Beard J (1977) Thermoregulation during entrance into hibernation. Pflügers Arch Eur J Physiol 369(1):55–59

    Article  Google Scholar 

  • Dausmann KH, Warnecke L (2016). Primate torpor expression: ghost of the climatic past. Physiology 31(6):398–408.

    Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Physiology: hibernation in a tropical primate. Nature 429(6994):825–826

    Article  CAS  PubMed  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175(3):147–155

    Article  PubMed  Google Scholar 

  • Defler TR, Bueno ML (2007) Aotus diversity and the species problem. Primate Conserv 22(1):55–70

    Article  Google Scholar 

  • Di Fiore A, Valencia LM, Martins A (2023) Phylogenetics and phylogeography of owl monkeys (Aotus): the molecular evidence. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Dollman G (1909) Six new species of Aotus. Ann Mag Nat Hist 4(21):199–204

    Article  Google Scholar 

  • Duarte-Guterman P, Navarro-Martín L, Trudeau VL (2014) Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen Comp Endocrinol 203:69–85

    Article  CAS  PubMed  Google Scholar 

  • Ellison PT (2003) Energetics and reproductive effort. Am J Hum Biol 15(3):342–351

    Article  PubMed  Google Scholar 

  • Eppley TM, Watzek J, Dausmann KH, Ganzhorn JU, Donati G (2017) Huddling is more important than rest site selection for thermoregulation in southern bamboo lemurs. Anim Behav 127:153–161

    Article  Google Scholar 

  • Erkert HG, Gröber J (1986) Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol 47(4):171–188

    Article  CAS  Google Scholar 

  • Erkert HG, Fernandez-Duque E, Rotundo M, Scheideler A (2012) Seasonal variation of temporal niche in wild owl monkeys (Aotus azarai azarai) of the Argentinean Chaco: a matter of masking? Chronobiol Int 29(6):702–714

    Article  PubMed  Google Scholar 

  • Evans AL, Singh NJ, Friebe A, Arnemo JM, Laske TG, Fröbert O, Swenson JE, Blanc S (2016) Drivers of hibernation in the brown bear. Front Zool 13(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenzl A, Kiefer FW (2014) Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Investig 19(1):25–37

    CAS  PubMed  Google Scholar 

  • Fernandez-Duque E (2003) Influences of moonlight, ambient temperature, and food availability on the diurnal and nocturnal activity of owl monkeys (Aotus azarai). Behav Ecol Sociobiol 54:431–440

    Google Scholar 

  • Fernandez-Duque E (2009) Natal dispersal in monogamous owl monkeys (Aotus azarai) of the Argentinean Chaco. Behaviour 146(4–5):583–606

    Article  Google Scholar 

  • Fernandez-duque E (2011) Rensch’s rule, Bergmann’s effect and adult sexual dimorphism in wild monogamous owl monkeys (Aotus azarai) of Argentina. Am J Phys Anthropol 146(1):38–48

    Article  PubMed  Google Scholar 

  • Fernandez-Duque E (2016) Social monogamy in wild owl monkeys (Aotus azarae) of Argentina: the potential influences of resource distribution and ranging patterns. Am J Primatol 78(3):355–371

    Article  PubMed  Google Scholar 

  • Fernandez-Duque E, de la Iglesia H (2023 this volume) Temporal niche plasticity of owl monkeys. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Fernandez-Duque E, Erkert HG (2006) Cathemerality and lunar periodicity of activity rhythms in owl monkeys of the Argentinian Chaco. Folia Primatol 77(1–2):123–138

    Article  Google Scholar 

  • Fernandez-Duque E, Huck M (2013) Till death (or an intruder) do us part: intrasexual-competition in a monogamous primate. PLoS One 8(1):1–5

    Article  Google Scholar 

  • Fernandez-Duque E, Rotundo M, Ramirez-Llorens P (2002) Environmental determinants of birth seasonality in night monkeys (Aotus azarai) of the Argentinean Chaco. Int J Primatol 23(3):639–656

    Article  Google Scholar 

  • Fernandez-Duque E, Valeggia CR, Mendoza SP (2009) The biology of paternal care in human and nonhuman primates. Annu Rev Anthropol 38:115–130

    Article  Google Scholar 

  • Fernández-Duque E, de la Iglesia H, Erkert HG (2010) Moonstruck primates: owl monkeys (Aotus) need moonlight for nocturnal activity in their natural environment. PLoS One 5(9):1–6

    Article  Google Scholar 

  • Fernandez-Duque E, Juárez CP, Defler T (2023, this volume) Morphology, systematics and taxonomy of owl monkeys. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Féron C, Gouat P (2007) Paternal care in the mound-building mouse reduces inter-litter intervals. Reprod Fertil Dev 19(3):425–429

    Article  PubMed  Google Scholar 

  • Garcia JE, Braza F (1987) Activity rhythms and use of space of a group of Aotus azarae in Bolivia during the rainy season. Primates 28(3):337–342

    Article  Google Scholar 

  • García de la Chica A, Spence-Aizenberg A, Wolovich CK, Evans S, Fernandez-Duque E (2023, this volume) Social behavior in owl monkeys. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Gestich CC, Caselli CB, Setz EZF (2014) Behavioural thermoregulation in a small neotropical primate. Ethology 120(4):331–339

    Article  Google Scholar 

  • Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, Ancel A (2010) One for all and all for one: the energetic benefits of huddling in endotherms. Biol Rev 85(3):545–569

    PubMed  Google Scholar 

  • Hanya G, Kiyono M, Hayaishi S (2007) Behavioral thermoregulation of wild Japanese macaques: comparisons between two subpopulations. Am J Primatol 69(7):802–815

    Article  PubMed  Google Scholar 

  • Harper ME, Seifert EL (2008) Thyroid hormone effects on mitochondrial energetics. Thyroid 18(2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141(3):317–329

    Article  PubMed  Google Scholar 

  • Helfer G, Barrett P, Morgan PJ (2019) A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals. J Neuroendocrinol 31(3):e12680

    Article  PubMed  Google Scholar 

  • Hershkovitz P (1983) Two new species of night monkeys, genus Aotus (Cebidae, platyrrhini): a preliminary report on Aotus taxonomy. Am J Primatol 4(3):209–243

    Article  PubMed  Google Scholar 

  • Hetem RS, Maloney SK, Fuller A, Mitchell D (2016) Heterothermy in large mammals: inevitable or implemented? Biol Rev 91(1):187–205

    Article  PubMed  Google Scholar 

  • Hua Y, Zhang W, Xu Y (2010) Seasonal variation of pelage characteristics in Siberian weasel (Mustela sibirica) of Xiaoxing’ anling area, Heilongjiang, China. Acta Theriol Sin 30(1):110–114

    Google Scholar 

  • Huck M, Fernandez-Duque E (2023, this volume) The great unknown – the floating stage as a neglected aspect of social systems. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Huck M, Rotundo M, Fernandez-Duque E (2011) Growth and development in wild owl monkeys (Aotus azarai) of Argentina. Int J Primatol 32(5):1133–1152

    Article  Google Scholar 

  • Huck M, Fernandez-Duque E, Babb P, Schurr T (2014) Correlates of genetic monogamy in socially monogamous mammals: insights from Azara’s owl monkeys. Proc R Soc B Biol Sci 281(1782):20140195

    Article  Google Scholar 

  • Humphries MM, Careau V (2011) Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr Comp Biol 51(3):419–431

    Article  PubMed  Google Scholar 

  • Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H (2012) In search of a temporal niche: environmental factors. In: Progress in brain research, vol 199, 1st edn. Elsevier B.V, The Netherlands

    Google Scholar 

  • Joffe B, Peichl L, Hendrickson A, Leonhardt H, Solovei I (2014) Diurnality and nocturnality in primates: an analysis from the rod photoreceptor nuclei perspective. Evol Biol 41(1):1–11

    Article  Google Scholar 

  • Jones JH (2011) Primates and the evolution of long, slow life histories. Curr Biol 21(18):R708–R717

    Google Scholar 

  • Kelley EA, Jablonski NG, Chaplin G, Sussman RW, Kamilar JM (2016) Behavioral thermoregulation in Lemur catta: the significance of sunning and huddling behaviors. Am J Primatol 78(7):745–754

    Article  PubMed  Google Scholar 

  • Khimji SN, Donati G (2014) Are rainforest owl monkeys cathemeral? Diurnal activity of black-headed owl monkeys, Aotus nigriceps, at Manu biosphere reserve, Peru. Primates 55(1):19–24

    Article  PubMed  Google Scholar 

  • Kingma B, Frijns A, van Marken Lichtenbelt W (2012) The thermoneutral zone: implications for metabolic studies. Front Biosci 4:1975–1985

    Article  Google Scholar 

  • Koopman HN (2007) Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar Biol 151(1):277–291

    Article  Google Scholar 

  • Langreth SG, Peterson E (1985) Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infect Immun 47(3):760–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Maho Y, Goffart M, Rochas A (1981) Thermoregulation in the only nocturnal simian: the night monkey Aotus trivirgatus. Am J Physio Regul Integr Comp Physiol 240(3):R156–R165

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68(4):619–640

    Article  Google Scholar 

  • Link A, Muñoz-Delgado J, Montilla SO (2023) Nocturnality and activity budgets of owl monkeys in tropical ecosystems. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Little AG, Seebacher F (2014) The evolution of endothermy is explained by thyroid hormone mediated responses to cold in early vertebrates. J Exp Biol 217(10):1642–1648

    Article  CAS  PubMed  Google Scholar 

  • Lovegrove BG (2005) Seasonal thermoregulatory responses in mammals. J Comp Physiol B 175(4):231–247

    Article  PubMed  Google Scholar 

  • Mahoney SP, Schaefer JA (2002) Hydroelectric development and the disruption of migration in caribou. Biol Conserv 107(2):147–153

    Article  Google Scholar 

  • McCafferty DJ, Pandraud G, Gilles J, Fabra-Puchol M, Henry PY (2018) Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings. Bioinspir Biomim 13(1):011001

    Article  Google Scholar 

  • Mcfarland R, Fuller A, Hetem RS, Mitchell D, Maloney SK, Henzi SP, Barrett L (2015) Social integration confers thermal benefits in a gregarious primate. J Anim Ecol 84(3):871–878

    Article  PubMed  Google Scholar 

  • McKechnie AE, Wolf BO (2019) The physiology of heat tolerance in small endotherms. Physiology (Bethesda) 34(5):302–313

    CAS  PubMed  Google Scholar 

  • McKinley MJ, Martelli D, Pennington GL, Trevaks D, McAllen RM (2018) Integrating competing demands of osmoregulatory and thermoregulatory homeostasis. Physiology (Bethesda) 33(3):170–181

    CAS  PubMed  Google Scholar 

  • Morrison SF, Nakamura K (2019) Central mechanisms for thermoregulation. Annu Rev Physiol 81(1):285–308

    Article  CAS  PubMed  Google Scholar 

  • Morrison P, Simões J Jr (1962) Body temperatures in two brazilian primates. Fortschr Zool 24:167–178

    Google Scholar 

  • Moynihan MH (1964) Some behavior patterns of platyrrhine monkeys: I. the night monkey (Aotus trivirgatus). Smithsonian Miscellaneous Collections

    Google Scholar 

  • Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94(2):355–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obregon MJ (2014) Adipose tissues and thyroid hormones. Front Physiol 5:479

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortmann S, Heldmaier G, Schmid J, Ganzhorn JU (1997) Spontaneous daily torpor in Malagasy mouse lemurs. Naturwissenschaften 84(1):28–32

    Article  CAS  PubMed  Google Scholar 

  • Ostner J (2002) Social thermoregulation in redfronted lemurs (Eulemur fulvus rufus). Folia Primatol 73(4):175–180

    Article  Google Scholar 

  • Ostner J, Schülke O (2018) Linking sociality to fitness in primates: a call for mechanisms. In: Advances in the study of behavior, vol 50. Academic Press, Switzerland (Folia Primatologica), pp 127–175

    Google Scholar 

  • Perea-Rodríguez JP, Corley MK, de la Iglesia H, Fernandez-Duque E (2022) Thermoenergetic challenges and daytime behavioural patterns of a wild cathemeral mammal. Anim Behav 185:163–173

    Google Scholar 

  • Pichon C, Simmen B (2015) Energy management in crowned sifakas (Propithecus coronatus) and the timing of reproduction in a seasonal environment. Am J Phys Anthropol 158(2):269–278

    Article  PubMed  Google Scholar 

  • Puig S, Rosi MI, Videla F, Mendez E (2011) Summer and winter diet of the guanaco and food availability for a high Andean migratory population (Mendoza, Argentina). Mamm Biol 76(6):727–734

    Article  Google Scholar 

  • Rasmussen K, Palacios DM, Calambokidis J, Saborío MT, Dalla Rosa L, Secchi ER, Steiger GH, Allen JM, Stone GS (2007) Southern hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration. Biol Lett 3(3):302–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathbun GB, Gache M (1980) Ecological survey of the night monkey, Aotus trivirgatus, in Formosa Province, Argentina. Primates 21(2):211–219

    Article  Google Scholar 

  • Rensch B (1950) Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonner Zool Beitr 1:58–69

    Google Scholar 

  • Riede SJ, Van Der Vinne V, Hut RA (2017) The flexible clock: predictive and reactive homeostasis, energy balance and the circadian regulation of sleep-wake timing. J Exp Biol 220(5):738–749

    Article  PubMed  Google Scholar 

  • Rosenberger AL, Tejedor MF (2023, this volume) Why owl monkeys are pitheciids: morphology, adaptations and the evolutionary history of the Aotus lineage. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Rotundo M, Fernandez-Duque E, Dixson AF (2005) Infant development and parental care in free-ranging Aotus azarai azarai in Argentina. Int J Primatol 26(6):1459–1473

    Article  Google Scholar 

  • Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev 90(3):891–926

    Article  PubMed  Google Scholar 

  • Russell JE, Tumlison R (1996) Comparison of microstructure of white winter fur and brown summer fur of some Arctic mammals. Acta Zool 77(4):279–282

    Article  Google Scholar 

  • Sarabian C, Curtis V, McMullan R (2018) Evolution of pathogen and parasite avoidance behaviours. Philos Trans R Soc Lond B Biol Sci 373:20170256

    Article  PubMed  PubMed Central  Google Scholar 

  • Savagian A, Fernandez-Duque E (2017) Do predators and thermoregulation influence choice of sleeping sites and sleeping behavior in Azara’s owl monkeys (Aotus azarae azarae) in Northern Argentina? Int J Primatol 38(1):80–99

    Article  Google Scholar 

  • Scholander PF, Hock R, Walters V, Irving L (1950a) Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull 99(2):259–271

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Hock R, Walters V, Johnson F, Irving L (1950b) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99(2):237–258

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Walters V, Hock R, Irving L (1950c) Body insulation of some arctic and tropical mammals and birds. Biol Bull 99(2):225–236

    Article  CAS  PubMed  Google Scholar 

  • Shanee S, Tirira DG, Aquino R, Carretero-Pinzón X, Link A, Maldonado AM, Mendez-Carvajal P, Urbani B, Wallace R, Juárez CP, Fernandez-Duque E (2023, this volume) Geographic distribution of owl monkeys. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Smith RJ, Cheverud JM (2002) Scaling of sexual dimorphism in body mass: a phylogenetic analysis of Rensch’s rule in primates. Int J Primatol 23(5):1095–1135

    Article  Google Scholar 

  • Stearns SC (2000) Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87(11):476–486

    Article  CAS  PubMed  Google Scholar 

  • Szabó N, Dubas JS, Volling BL, van Aken MAG (2017) The effect of paternal and alloparental support on the interbirth interval among contemporary North American families. Evol Behav Sci 11(3):272

    Article  PubMed  PubMed Central  Google Scholar 

  • Terrien J, Perret M, Aujard F (2011) Behavioral thermoregulation in mammals: a review. Front Biosci 16(4):1428–1444

    Article  Google Scholar 

  • van der Heide G, Fernandez-Duque E, Iriart D, Juárez CP (2012) Do forest composition and fruit availability predict demographic differences among groups of territorial owl monkeys (Aotus azarai)? Int J Primatol 33(1):184–207

    Article  Google Scholar 

  • Van Der Vinne V, Riede SJ, Gorter JA, Eijer WG, Sellix MT, Menaker M, Daan S, Pilorz V, Hut RA (2014) Cold and hunger induce diurnality in a nocturnal mammal. Proc Natl Acad Sci 111(42):15256–15260

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Vinne V, Gorter JA, Riede SJ, Hut RA (2015) Diurnality as an energy-saving strategy: energetic consequences of temporal niche switching in small mammals. J Exp Biol 218(16):2585–2593

    Article  PubMed  Google Scholar 

  • Walcott SM, Kirkham AL, Burns JM (2020) Thermoregulatory costs in molting Antarctic Weddell seals: impacts of physiological and environmental conditions. Conserv Physiol 8(1):coaa022

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittow GC, Guernsey DL, Morishige WK (1979) Thyroid activity in a hypometabolic primate, the owl monkey (aotus trivirgatus). Arch Physiol Biochem 87(5):963–967

    CAS  Google Scholar 

  • Wilson SP (2017) Modelling the emergence of rodent filial huddling from physiological huddling. R Soc Open Sci 4(11):170885

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolovich CK, Perea-Rodriguez JP, Fernandez-Duque E (2008) Food transfers to young and mates in wild owl monkeys (Aotus azarai). Am J Primatol 70(3):211–221

    Article  PubMed  Google Scholar 

  • Wright PC (1978) Home range, activity pattern, and agonistic encounters of a group of night monkeys (Aotus trivirgatus) in Peru. Folia Primatol 29(1):43–55

    Article  CAS  Google Scholar 

  • Yahav S, Buffenstein R (1991) Huddling behavior facilitates homeothermy in the naked mole rat. Physiol Zool 64(3):871–884

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to first thank our families for their continued support in our endeavor to understand the evolution, ecology, physiology, and behavior of owl monkeys. We would also like to thank the current and past members of Fundación ECO, the Owl Monkey Project, and Team Aotus for being an important force in the study of these amazing monkeys. We would also like to thank Dan Blumstein and an anonymous reviewer for their constructive comments on our manuscript. Special thanks to Prof. Hans Erkert for his insight, support, and inspiration. JP would like to give special thanks to S. Cruz and L. C. Perea-Cruz for their love and for their attention and criticism of earlier drafts.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Eduardo Fernandez-Duque

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perea-Rodríguez, J.P., de la Iglesia, H., Fernandez-Duque, E. (2023). What Owl Monkeys (Aotus spp.) Tell Us About the Dynamics Between Thermo-Energetics and Organismal Biology. In: Fernandez-Duque, E. (eds) Owl Monkeys. Developments in Primatology: Progress and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-031-13555-2_10

Download citation

Publish with us

Policies and ethics